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Criticality classes and risk reduction

• Criticality classes

• Assessment of severity

• Assessment of controlability

• Examples: protection against runaway
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Cooling Failure Scenario
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Characteristic Temperatures

• Tp : Process Temperature
Defined by the mode of operation

• MTSR: Maximum Temperature of Synthesis Reaction
Defined by the accumulation of reactants and Tp

• TD24: Temperature at which the Decomposition 
becomes critical TMRad = 24 hrs
Defined by the thermal stability of reaction mass

• MTT: Maximum Temperature for Technical Reasons
Defined by the equipment
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Classification of Scenarios
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Principles

• Define the criticality class
– For criticality class 3 and above (possible to do it also for class 1 and 2):

• Determine the energy potential
– Criticality class 3: only desired reaction
– Criticality class 4: desired and secondary reactions
– Criticality class 5: desired and secondary reactions

• Assess the consequences of the resulting scenario
– Severity using the energy to be released
– Define appropriate risk reducing measures 
– Probability of loss of control
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Criticality classes and risk reduction

• Criticality classes

• Assessment of severity

• Assessment of controlability

• Examples: protection against runaway
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Criticality classes 1 & 2
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Criticality class 3
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Criticality classes 4 & 5
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Closed system: Pressure

• Gas pressure

• Vapour pressure
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Open system: volume

• Gas volume

• Vapour volume
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Consequences based on volume

• Flammability
– Largest explosible cloud
– Dilution to LEL (lower explosive limit)
– Calculation as half-sphere

• Toxicity
– Volume of toxic cloud
– Dilution to toxicity limit
– Calculation as half-sphere
 AEGL: Acute Exposure Guideline Level
 Or IDLH: Immediatly Dangerous to Life and Health

Caution ! Calculation as a half-sphere has nothing to do with atmospheric dispersion calculations.
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Proposed Severity Criteria

Severity ∆Tad P Area concerned

Catastrophic >400 K > Ptest > Site

Critical 200 – 400 K Pmax – Ptest Site

Medium 50 – 200 K Pset - Pmax Plant

Negligible < 50 K < Pset Equipment



Criticality classes and risk reduction

• Criticality classes

• Assessment of severity

• Assessment of controlability

• Examples: protection against runaway



Controllability: Thermal activity

• Assessment of behaviour of reaction at MTT
– Thermal power
 Runaway: TMRad from MTT or MTSR
 Power compared to cooling capacity
 Evaporation: vapour velocity

– Gas release rate
 Pressure increase rate
 Gas velocity

 The higher the activity, the higher the probability of loss of control



Arrhenius Diagramme

• One point extrapolation
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Controllability: gas release

• Volume flow rate at MTT
– Assumption: flow rate proportional to heat release rate

(same reaction produces gas and heat)

• Gas velocity

• Data from
– Experiments: Calvet or reaction calorimetry
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Controllability: Evaporation

• Mass flow rate at MTT

• Density

• Volume flow rate

• Vapour velocity
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Probability of Reactor Loss of Control 

Probability Controllability TMRad (h)
from MTT

q’  (W/kg)
Stirred

q’ (W/kg)
Unstirred

u 
(m/s)

Frequent Unlikely <1 > 100 > 10 > 20

Probable Difficult 1 – 8 50 – 100 5 – 10 10 – 20

Occasional Marginal 8 – 24 10 – 50 1 – 5 5 – 10

Low Feasible 24 – 50 5 – 10 0.5 – 1 2 – 5

Remote Easy 50 – 100 1 – 5 0.1 – 0.5 1 – 2

Almost 
impossible Un-problematic > 100 < 1 < 0.1 < 1
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Choice of Measures

"Avoid the problem rather than solve it"
Trevor Kletz

Avoid the runaway rather than mitigate its consequences



Measures: Strategies for choice

• Risk reduction by design
– Reduction of the severity
– Semi-batch / Batch
– Continuous / Batch

• Risk reduction by control
– Technical measures 
– Avoid runaway
– Fail safe process

• Emergency measures
– Mitigate the consequences of runaway
– Containment
– Pressure relief



Protection Layers for Batch Reactors after IEC 61511

Hazard First
Deviation

Second
Deviation Excursion Effect

ProtectivePrevention

Inherently Safer Process

Technical Risk Reducing Measures

Process control

Control / Alarm / Operator

Emergency



Cooling by Evaporation: using the boiling barrier
Limiting Factors

Flooding of vapour tube
Power of
Condensor

Swelling of 
Reaction Mass 

Power of Reaction



Amount of Vapour

• All the energy used for boiling (reaction mass is at the boiling temperature)

• As a function of the "distance" from Boiling Point
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Vapour flow, velocity

• Mass flow rate of vapour

• Vapour specific weight

• Vapour velocity
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Flooding

• Flooding of the vapour tube: 
– Consequence: increased pressure drop
– Boiling barrier does not work: pressure increases

Vapour
Liquid



Flooding of Vapour Tube
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Flooding of Vapor Tube
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Swelling of Reaction Mass

HB : Liquid level during boiling
H0 : Liquid level without boiling
ρG : specific weight of vapour, kg.m-3

ρL : specific weight of liquid, kg.m-3

σ : interfacial tension kg.s-2

DH : Hydraulic diameter of reactor, m
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Swelling due to evaporation
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Example: Cooling by evaporation

6.3 m3 reactor filled with 6.3 m3 of acetone

Diameter of vapour tube 200 mm 300 mm

Max. heat release rate 35 W/kg 68 W/kg

Limiting factor Flooding Swelling

Vmax = 7 m3



Technical Measures
Limitation of feed in SBR

• Amount of feed
– Portions
– Redundant feed valves

• Feed rate
– Orifice
– Volumetric pump

• Interlocks
– Temperature + / -
– Stirrer



Emergency Cooling

• Must be independant of utilities

• Limitation in case of solidification

• Agitation is critical
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Quenching

• Amount of inhibitor
• Temperature of inhibitor
• Rate of addition
• Degree of mixing



Dumping

• Dumping vessel with required volume

• Transfer line



Calvet Calorimetry 

Quantitative measurement

• Simulation of dumping or quench

• Measurement of pressure

• Mixing cell
– Water ingress
– Quenching
– Inhibition
– Dumping



Inhibition

Trempe

Stability after quench



Controlled depressurisation

• Different from pressure relief
• Allows to use evaporative cooling
• Condenser or scrubber
• Independent of utilities



Time Factor
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Emergency  Pressure Relief

Champagne-Effect



Design for two phase flow

• Increased head loss
• Larger section required
• Evaporation due to expansion
• High velocity

Specific Design Method according to DIERS
(Design Institute for Emergency Relief Systems)



Sizing Examples

Required diameter for a rupture disk

• Physical scenario
– Maximum heating (150°C) with acetone
– Heating power: 110 W/kg
– One phase flow: 50 mm
– Two phase flow: 150 mm

• Chemical reaction
– Power at process temperature: 20 W/kg
– Power at relief conditions: 310 W/kg
– Two phase flow: 250 mm



Emergency Pressure Relief

• Emergency pressure relief shall only be used as a last line of defence

• Two phase flow is likely to occur
• Two phase flow requires larger diameters
• High velocities: mechanical design: thrust
• Effluent treatment is required
• Effluent treatment to be sized to separate liquid
• Secondary explosion likely with flammable compounds
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