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Criticality classes and risk reduction

Criticality classes
Assessment of severity
Assessment of controlability

Examples: protection against runaway
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Cooling Failure Scenario
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Characteristic Temperatures

e MTSR:

* Tpos

o MTT:

Process Temperature
Defined by the mode of operation

Maximum Temperature of Synthesis Reaction
Defined by the accumulation of reactants and Tp
Temperature at which the Decomposition
becomes critical TMR,, = 24 hrs

Defined by the thermal stability of reaction mass

Maximum Temperature for Technical Reasons
Defined by the equipment



Classification of Scenarios

‘Temperature
TD24
MTSR MTSR MTSR
| | |
MTT
Tprocess I I I I
Criticality Index: 1 2 3 4 5



Principles

 Define the criticality class
— For criticality class 3 and above (possible to do it also for class 1 and 2):

 Determine the energy potential
— Criticality class 3: only desired reaction
— Criticality class 4: desired and secondary reactions
— Criticality class 5: desired and secondary reactions

 Assess the consequences of the resulting scenario
— Severity using the energy to be released
— Define appropriate risk reducing measures
— Probability of loss of control



Criticality classes and risk reduction

» Assessment of severity
 Assessment of controlability

« Examples: protection against runaway



Criticality classes 1 & 2

MTT

:

Determination of gas volume or
pressure at MTSR

V or P critical? no End

yes

Activity of secondary
reactions

Pressure increase Gas velocity

Design of pressure Design of gas
relief or resistance treatment




Criticality class 3

Determination of gas or vapour
volume or pressure at MTT

MmN V or P critical? no End
MTSR yes
MTT Activity of s_yntheS|s
reaction
. Vapour velocity Gas velocity
Design of distillation Design of gas

(reflux) system treatment



Criticality classes 4 & 5

MTT




Closed system: Pressure
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P: Pressure bar

« Gas pressure 'Measurement e.g.
P,: Initial pressure (pad gas in the installation) bar

e Setaram C80
I  Miniautoclave

| Vg: Volume released in the installation m?

e Radex

RC V., ,: Void volume in the installation m’

P ... Measured pressure bar

rg
‘ S Void volume in
VADoUr oressure equipment P : Pressure bar
¥ ¥ T :Temperature K
| P — AHV 1 1 P, : Reference pressure bar
N — |= — ;
T, : Reference temperature K
P R (T T, : P
AH, : latent heat of evaporation J mol™
B P : Pressure bar
log ( P) = A- T : Temperature K

A,B,C; Antoine Parameter



Open system: volume

V, :Gas volume m®

T .
 (Gas volume A7 (K) m, : Reaction mass kg

' . if1 3 -1
Measurement e.g. mes(K ) V, : specific gas volume m® kg

e Setaram C80
| Miniautoclave

* Radex
'« RC

X :Conversion
T : Temperature

T - Temperature at measurement

5 3
o Vapour volume V,, :Vapour volume m
m,,:Mass of vapour kg

V = —V p,:Vapour density kg m”

Jo y T.....Maximum achievable temperature K

M A T,,;:Boiling pointK

(T —MTT ) . CI'O -M ¢, :specific heat capacity J kg™ K™

max
MTT AT . v AH \; m, :reaction mass kg

T AH, :Latent enthalpy of evaporation J mol™
v P-M P: Pressure Pa
Py = R. ( |\/|TT) M, : Mole weight kg mol™
R: Gas constant:3.14 J mol™* K™




Consequences based on volume
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 Flammability
— Largest explosible cloud
— Dilution to LEL (lower explosive limit)

— Calculation as half-sphere
Vex

* Toxicity
— Volume of toxic cloud

— Dilution to toxicity limit
— Calculation as half-sphere V /
= AEGL: Acute Exposure Guideline Level fox o AEGL

= Or IDLH: Immediatly Dangerous to Life and Health

+» Caution ! Calculation as a half-sphere has nothing to do with atmospheric dispersion calculations.



Proposed Severity Criteria

Catastrophic >400 K Prest

Medium 50 - 200 K I:)set ) I:)max
Negligible <50K <Py

Equipment



Criticality classes and risk reduction

» Assessment of controlability

« Examples: protection against runaway



Controllability: Thermal activity

e Assessment of behaviour of reaction at MTT

— Thermal power
= Runaway: TMR,, from MTT or MTSR
= Power compared to cooling capacity
= Evaporation: vapour velocity

— Gas release rate
= Pressure increase rate
= Gas velocity

» The higher the activity, the higher the probability of loss of control



Arrhenius Diagramme

 One point extrapolation
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Controllability: gas release

e Volume flow rate at MTT

— Assumption: flow rate proportional to heat release rate
(same reaction produces gas and heat)

v, : volumeflow rate m3/s

. / r. 3
e Gas velocit V! gas volume m* / kg
Y v =V'-M - m M reaction mass kg
g g r ' Qi) - thermal power W / kg
Q Q': heat of reaction J /kg

 Data from
— Experiments: Calvet or reaction calorimetry

u : gas velocity m/s
3 Vg v volume flow rate m’/s
g g S : tube section m’

In a closed system: allways ensure that gas release remains uncritical



Controllability: Evaporation

Mass flow rate at MTT

Density

Volume flow rate

Vapour velocity

' ‘M m, :mass flow rate[kg, /s]
. Yoy r ,
m, = AH Ggwrry - thermal power at MTT [W / kng]
Y M, : reaction mass [kg |
p.M AH, : latent heat of evaporation|J /kg, |
PSR T p, density| kg /m® |
o, P: pressure[Pa]
Vy = 7 R : gas constant = 8.314 J/(mol - K)
. MTT (K
v K]
uV = — _ i
S u :gasvelocitym/s

v :volume flowrate m’ /s
S : pipe sectionm’

In case of simulatneous gas and vapour release add velocities u, and u,



Probability of Reactor Loss of Control

Probability Controllability MR, (h) | q (Wkg) | g (Wikg) !
from MTT Stirred Unstirred (m/s)
> 10 > 20

iImpossible

5-10

1-5

05-1

01-0.5

<01

10-20



Criticality classes and risk reduction

« Examples: protection against runaway



Criticality classes and risk reduction

« Examples: protection against runaway



Choice of Measures

"Avoid the problem rather than solve it"
Trevor Kletz

Avoid the runaway rather than mitigate its consequences



Measures: Strategies for choice

* Risk reduction by design
— Reduction of the severity
— Semi-batch / Batch
— Continuous / Batch

* Risk reduction by control
— Technical measures
— Avoid runaway
— Falil safe process

e Emergency measures
— Mitigate the consequences of runaway
— Containment
— Pressure relief



Protection Layers for Batch Reactors after IEC 61511

Hazard F'.rst Se(_:or_ld Excursion Effect
Deviation Deviation
Prevention Process control Protective Emergency

=t

\ Technical Risk Reducing Measures
N Control / Alarm / Operator

Inherently Safer Process



Cooling by Evaporation: using the boiling barrier
Limiting Factors

Flooding of vapour tube\

Power of
Condensor

Swelling of
Reaction Mass

Power of Reaction



Amount of Vapour

o All the energy used for boiling (reaction mass is at the boiling temperature)

’ My Mass of evaporated solvent [kg Solvent]
QR . mR Q'r: Heat of reaction [kJ/kg Reaction mass]
mvap — p AH’, : Heat of vaporisation [kJ/kg Solvent]
AHV mg: Mass of reaction mixture [kg Reaction mass]

* As a function of the "distance" from Boiling Point

p m',,, : Mass of evaporated solvent [kg Solvent/kg reaction mass]
m’ — 1 - (Tb B To) : Qr T,: Boiling Temperature [°C]
vap AT AH’ Ty Starting temperature [°C]
ad \ AT, : Heat of vaporisation  [kJ/kg Solvent]

AH’, : Heat of vaporisation  [kJ/kg Solvent]
Q’r: Reaction energy [kJ/kg Reaction mass]



Vapour flow, velocity

. ‘.m m, Rate of evaporation [kg Solvent /s]
* Mass flow rate of vapour mv = qR p R qy: Heat release rate of reaction [W/kg]
AHV AH' Heat of vaporisation [J/kg Solvent]
P. |\/|W PG Vapour specific weight [kg/m?3]
« Vapour specific weight ~ Pe = p 7~ P. Pressure [Pa (abs)]
. My Molar weight [kg/mol]
R: ideal gas constant 8.314 [m3.Pa/(mol.K)]
T Temperature [K]
* Vapour velocity U, = S: Section of the pipe/reactor  [m?]

Pg S u,: Vapour velocity [m/s]



Flooding

 Flooding of the vapour tube:
— Consequence: increased pressure drop
— Boiling barrier does not work: pressure increases




Flooding of Vapour Tube

Qe [W ] = (4520 AH,, +3.37-10° ) s
4520 AH,, +3.37-10°

“emax = T000- A >
V G
Ug, o Limit velocity at interface, m.s™
AH'V: Heat of vaporisation, kJ / kg
Pg - specific Weight of vapour, kg.m
S: Section of tube, m?
4520: Constant: Mass flux, kg solvent / (m?.s)

3.37.10° Constant: Heat flux, J / (m2.s)



Flooding of Vapor Tube

4500

4000

3500

3000

2500

2000

1500

1000

500

q (kw)

Ne

» Water

_TMethanol

——TEthanol
- _-ti-Propanol
~_-%Acetone

Other solvents

0.6

Solvents

Water
Methanol
Ethanol
Isopropanol
Acetone
Toluene
THF

uG max _
Atmospheric

boiling conditions

10.3
6.6
5.4
4.7
5.2
4.8



Swelling of Reaction Mass

0.17

a=K.|—L£¢ D, - Ug
PL~ Pac

U, <2=>K=0.68 a=0.62

o = H B I_Io

Hg s >2=K=0.88 a=0.40
D, = D,

\/ ( @ ) H; : Liquid level during boiling

9-\PL = Pe H, : Liquid level without boiling
UG* _ Us P, - Specific weight of vapour, kg.m®
g o p, : specific weight of liquid, kg.m
g -(,0L — ,oG) o :interfacial tension kg.s

D, : Hydraulic diameter of reactor, m



Swelling due to evaporation

4.5

3.5

2.5

15

0.5

ug (m/s A

Water /
/ .

Ethanol

/0

/ ’
// l//‘. Toluene
%/
/ 4
‘—W
0.05 011 o.is 012 0.55 0.3 0.35 0.4 0.45 0.5



Example: Cooling by evaporation

6.3 m?3 reactor filled with 6.3 m? of acetone Vinax = 7 M3
Diameter of vapour tube 200 mm 300 mm
Max. heat release rate 35 Wikg 68 Wikg

Limiting factor Flooding Swelling



Technical Measures
Limitation of feed in SBR

e Amount of feed
— Portions
— Redundant feed valves

» Feed rate
— Orifice
— Volumetric pump

» |nterlocks
— Temperature +/ -
— Stirrer




Emergency Cooling

* Must be independant of utilities

e Limitation in case of solidification

« Agitation is critical Controllability | q' (W/kg) q
Stirred (Wikg)
Unstirred
>10

Urx Unlikely > 100

Point of no return

Difficult 50 - 100 5-10
Marginal 10-50 1-5

Temperature
of no return Feasible 5-10 0.5-1

1-5 0.1-0.5

<1 <0.1

problematic



Quenching

Amount of inhibitor
Temperature of inhibitor
Rate of addition

Degree of mixing

Probability Controllability | TMRad (h)
from MTT
Probable Difficult
m

Low Feasible -
Almost Un-
impossible problematic




Dumping

* Dumping vessel with required volume

e Transfer line —/ \_

Probability Controllability | TMRad (h)
from MTT

: o=
N - 1




Calvet Calorimetry

Output to
Pressure Sensar

Quantitative measurement
 Simulation of dumping or quench

 Measurement of pressure

 Mixing cell
— Water ingress
— Quenching
— Inhibition
— Dumping




Inhibition

Temperature! “C Heat Flow! m'

90 Exo /P 10]

Stability after quench

-10]

Onset point : §9.07 “C

50 Peak 1top : §3.07 °C

Enthalpy / Jig : 18.2 Temperature! “C Pressure/ bar Heat Flow) mw
250
0 75
Enddruck 19.5 bar/40°C
25 140—
30 65
120
10500 11000 11500 12000 12500 13000 200
55
I 100
H75
= 80/
H50
135 Onset point : 221.75 °C 60
M35 Peak 1top: 235.63 “C
Enthalpy / Jig : -516
HOn
75
50 -20}
o —
'[ 1 Time/!s

7000 12000 17000 22000 27000




Controlled depressurisation

Different from pressure relief
Allows to use evaporative cooling
Condenser or scrubber
Independent of utilities

Probability Controllability u
(m/s)
Probable m 10-20
2 - 5
1 - 2
Almost Un- <1
impossible problematic




Time Factor

Alarm
level

Temperature

Time to discovery

Time to maximum rate adiabatic

Time to effect

Time to action

time

v



Emergency Pressure Relief
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Design for two phase flow

 Increased head loss o

' ' | VENT 10 4T i
» Larger section required | xii‘“
- Evaporation due to expansion . 11

A _\LO_NG RADLUS
. SWEPT BEND
{ ' or ecaow

 High velocity C;S

| Reacror

e e |
A .,l../,. EETES
B |
 BLOWDOWN DRUM - |

= Specific Design Method according to DIERS
(Design Institute for Emergency Relief Systems)



Sizing Examples

Required diameter for a rupture disk

 Physical scenario
— Maximum heating (150°C) with acetone
— Heating power:
— One phase flow:
— Two phase flow:

* Chemical reaction
— Power at process temperature:
— Power at relief conditions:
— Two phase flow:

110 Wikg
50 mm
150 mm

20 W/kg
310 Wikg
250 mm



Emergency Pressure Relief

« Emergency pressure relief shall only be used as a last line of defence

« Two phase flow is likely to occur

« Two phase flow requires larger diameters

 High velocities: mechanical design: thrust

 Effluent treatment is required

 Effluent treatment to be sized to separate liquid

« Secondary explosion likely with flammable compounds
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