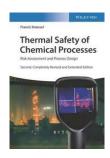


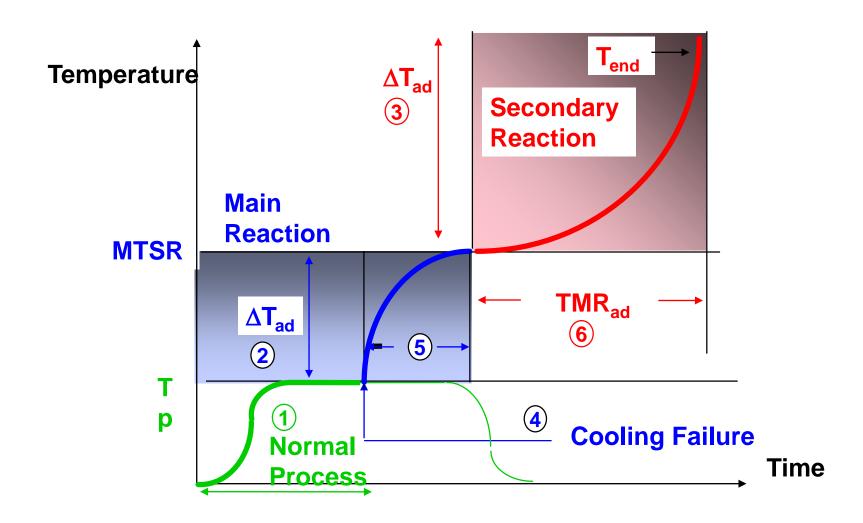
Criticality classes and risk reduction

Module 6

ENG 431: Safety Chemical Processes


Annik Nanchen

Criticality classes and risk reduction


- Criticality classes
- Assessment of severity
- Assessment of controlability
- Examples: protection against runaway

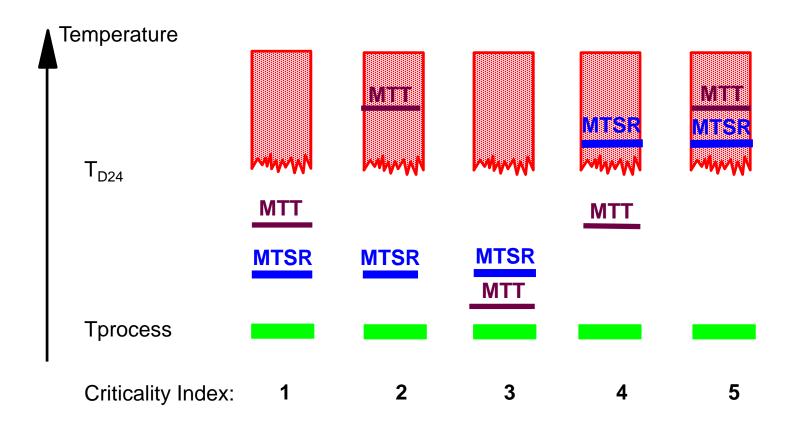
Chapter 15

• Tp : Process Temperature

Defined by the mode of operation

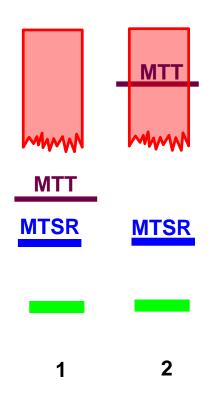
MTSR: Maximum Temperature of Synthesis Reaction

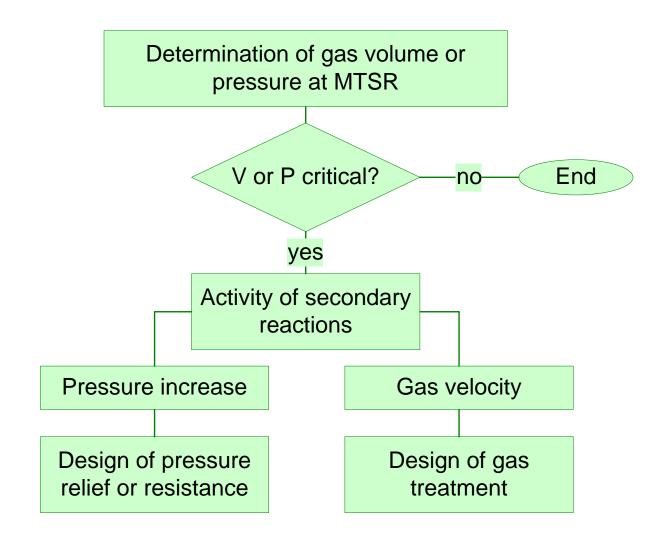
Defined by the accumulation of reactants and Tp

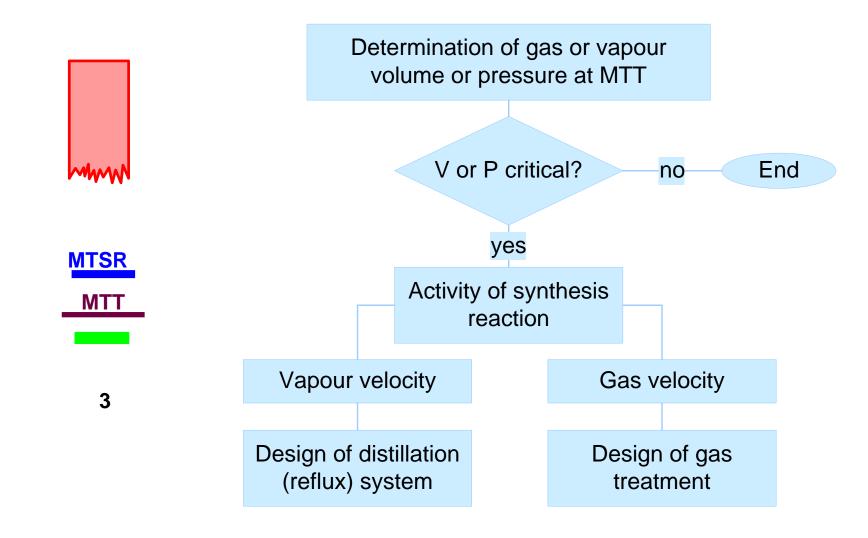

• T_{D24}: Temperature at which the Decomposition

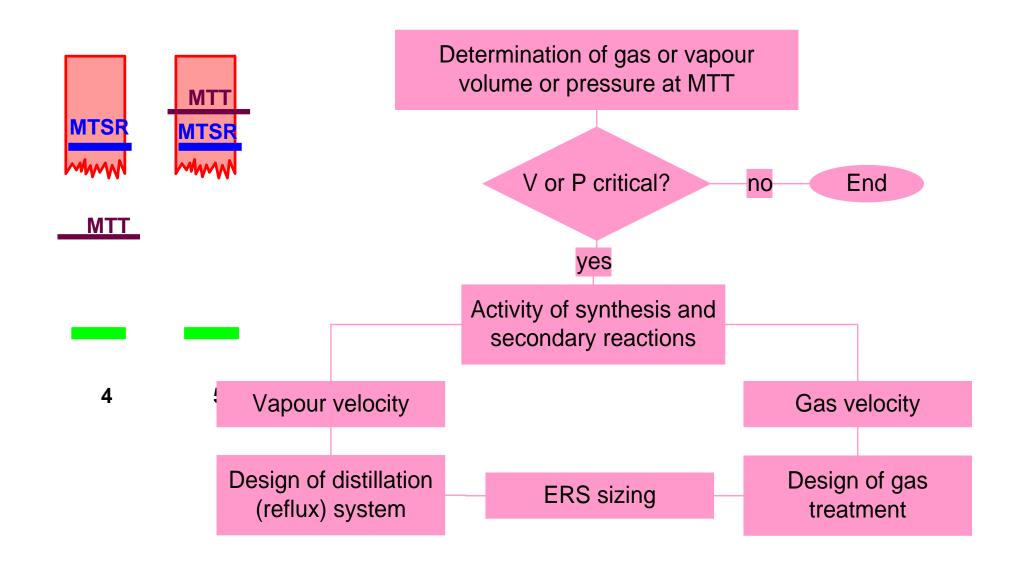
becomes critical $TMR_{ad} = 24 \text{ hrs}$

Defined by the thermal stability of reaction mass

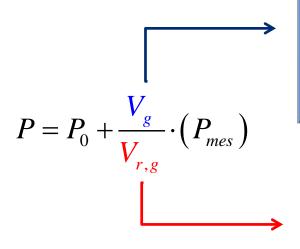

• MTT: Maximum Temperature for Technical Reasons


Defined by the equipment




- Define the criticality class
 - For criticality class 3 and above (possible to do it also for class 1 and 2):
- Determine the energy potential
 - Criticality class 3: only desired reaction
 - Criticality class 4: desired and secondary reactions
 - Criticality class 5: desired and secondary reactions
- Assess the consequences of the resulting scenario
 - Severity using the energy to be released
 - Define appropriate risk reducing measures
 - Probability of loss of control

- Criticality classes
- Assessment of severity
- Assessment of controlability
- Examples: protection against runaway



Gas pressure

Measurement e.g.

- Setaram C80
- Miniautoclave
- Radex
- RC

Void volume in equipment

Vapour pressure

$$\ln\left(\frac{P}{P_0}\right) = \frac{-\Delta H_v}{R} \left(\frac{1}{T} - \frac{1}{T_0}\right)$$

$$\log(P) = A - \frac{B}{C + T}$$

P: Pressure bar

P₀: Initial pressure (pad gas in the installation) bar

V_g: Volume released in the installation m³

V_{r,g}: Void volume in the installation m³

P_{mes}: Measured pressure bar

P: Pressure bar

T: Temperature K

 P_0 : Reference pressure bar

 T_0 : Reference temperature K

 ΔH_{v} : latent heat of evaporation J mol⁻¹

P: Pressure bar

T: Temperature K

A,B,C; Antoine Parameter

Gas volume

Measurement e.g.

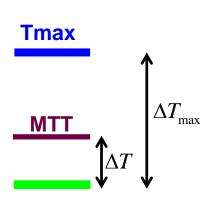
- Setaram C80
- Miniautoclave
- Radex
- RC

$$V_{g} = M_{r} \cdot V_{g}' \cdot X \cdot \frac{T_{(K)}}{T_{mes(K)}}$$

$$V_{g}' : \text{Re action mass } kg$$

$$V_{g}' : \text{specific gas volume } m^{3} kg^{-1}$$

$$Y : \text{Conversion}$$


 V_g : Gas volume m^3

X : Conversion

T: *Temperature*

 T_{mes} : Temperature at measurement

Vapour volume

$$V_{v} = \frac{M_{v}}{\rho_{v}}$$

$$M_{v} = \frac{\left(T_{\text{max}} - MTT\right) \cdot c_{p}' \cdot M_{r}}{\Delta H_{v}'}$$

$$\rho_{v} = \frac{P \cdot M_{w}}{R \cdot (MTT)}$$

V_v:Vapour volume m³

m_v:Mass of vapour kg

 $\rho_{\rm v}$:Vapour density kg m⁻³

T_{max}:Maximum achievable temperature K

T_{boil}:Boiling pointK

c'_p:specific heat capacity J kg⁻¹ K⁻¹

m_r:reaction mass kg

ΔH_v:Latent enthalpy of evaporation J mol⁻¹

P: Pressure Pa

M_w: Mole weight kg mol⁻¹

R: Gas constant: 3.14 J mol⁻¹ K⁻¹

- Flammability
 - Largest explosible cloud
 - Dilution to LEL (lower explosive limit)
 - Calculation as half-sphere
- Toxicity
 - Volume of toxic cloud
 - Dilution to toxicity limit
 - Calculation as half-sphere
 - AEGL: Acute Exposure Guideline Level
 - Or IDLH: Immediatly Dangerous to Life and Health

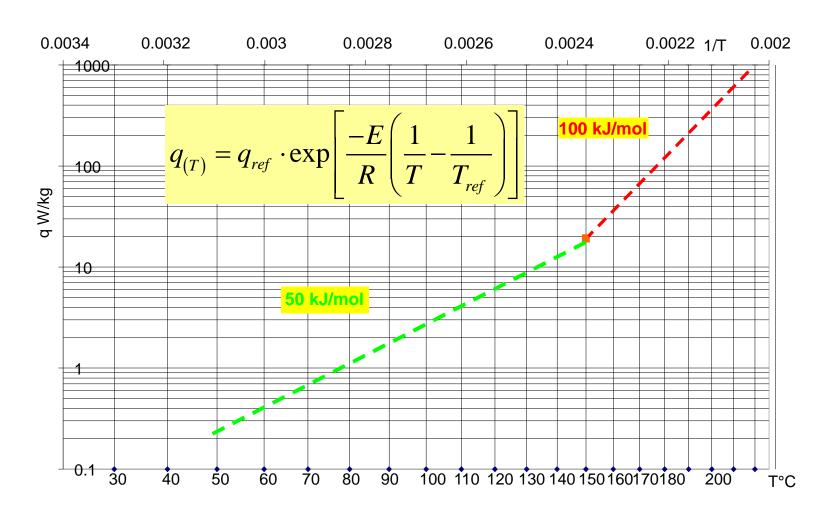
$$V_{ex} = \frac{V}{LEL} \Rightarrow r = \sqrt[3]{\frac{3 \cdot V_{ex}}{2\pi}}$$

$$V_{tox} = \frac{M}{\rho \cdot AEGL} \Rightarrow r = \sqrt[3]{\frac{3 \cdot V_{tox}}{2\pi}}$$

Caution! Calculation as a half-sphere has nothing to do with atmospheric dispersion calculations.

Proposed Severity Criteria

Severity	ΔT_{ad}	Р	Area concerned
Catastrophic	>400 K	> P _{test}	> Site
Critical	200 – 400 K	P _{max} – P _{test}	Site
Medium	50 – 200 K	P _{set} - P _{max}	Plant
Negligible	< 50 K	< P _{set}	Equipment


Criticality classes and risk reduction

- Criticality classes
- Assessment of severity
- Assessment of controlability
- Examples: protection against runaway

Controllability: Thermal activity

- Assessment of behaviour of reaction at MTT
 - Thermal power
 - Runaway: TMR_{ad} from MTT or MTSR
 - Power compared to cooling capacity
 - Evaporation: vapour velocity
 - Gas release rate
 - Pressure increase rate
 - Gas velocity
- > The higher the activity, the higher the probability of loss of control

One point extrapolation

Controllability: gas release

- Volume flow rate at MTT
 - Assumption: flow rate proportional to heat release rate (same reaction produces gas and heat)
- Gas velocity

$$\dot{v}_g = V_g' \cdot M_r \cdot \frac{q'_{(MTT)}}{Q'}$$

 \dot{v}_g : volumeflow rate m^3 / s V_g' : gas volume m^3 / kg M_r : reaction mass kg $q'_{(MTT)}$: thermal power W / kg Q': heat of reaction J / kg

- Data from
 - Experiments: Calvet or reaction calorimetry

$$u_g = \frac{\dot{v}_g}{S}$$

 u_g : gas velocity m/s

 \dot{v}_{g} : volume flow rate m³/s

S: tube section m²

In a closed system: allways ensure that gas release remains uncritical

Controllability: Evaporation

Mass flow rate at MTT

Density

Volume flow rate

Vapour velocity

$$\dot{m}_{v} = \frac{q'_{(MTT)} \cdot M_{r}}{\Delta H_{v}}$$

$$\rho_{v} = \frac{P \cdot M_{w}}{R \cdot MTT}$$

$$\dot{v}_{v} = \frac{\dot{m}_{v}}{\rho_{v}}$$

$$u_{v} = \frac{\dot{v}_{v}}{S}$$

$$\dot{m}_{v}$$
: mass flow rate $[kg_{v}/s]$

$$q'_{(MTT)}$$
: thermal power at $MTT[W/kg_{M_r}]$

$$M_r$$
: reaction mass $[kg]$

$$\Delta H_v$$
: latent heat of evaporation $[J/kg_v]$

$$\rho_{v}$$
: density $\left[kg/m^{3}\right]$

$$R: gas\ constant = 8.314\ J/(mol \cdot K)$$

 u_{v} : gas velocity m / s

 \dot{v}_{y} : volume flow rate m^{3}/s

 $S: pipe section m^2$

In case of simulatneous gas and vapour release add velocities \mathbf{u}_{v} and \mathbf{u}_{g}

Probability of Reactor Loss of Control

Probability	Controllability	TMR _{ad} (h) from MTT	q' (W/kg) Stirred	q' (W/kg) Unstirred	u (m/s)
Frequent	Unlikely	<1	> 100	> 10	> 20
Probable	Difficult	1 – 8	50 – 100	5 – 10	10 – 20
Occasional	Marginal	8 – 24	10 – 50	1 – 5	5 – 10
Low	Feasible	24 – 50	5 – 10	0.5 – 1	2 – 5
Remote	Easy	50 – 100	1 – 5	0.1 – 0.5	1 – 2
Almost impossible	Un-problematic	> 100	< 1	< 0.1	< 1

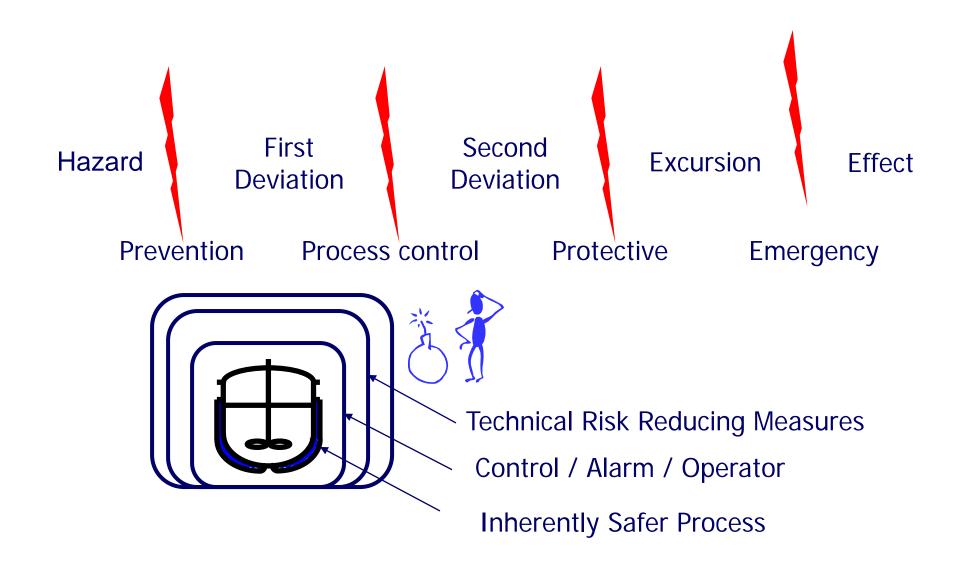
Criticality classes and risk reduction

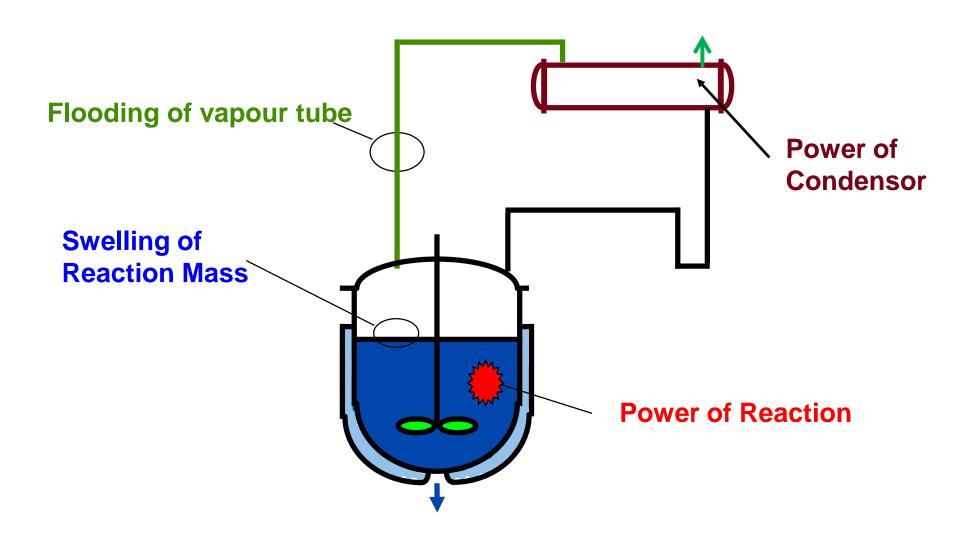
- Criticality classes
- Assessment of severity
- Assessment of controlability
- Examples: protection against runaway

Criticality classes and risk reduction

- Criticality classes
- Assessment of severity
- Assessment of controlability
- Examples: protection against runaway

Choice of Measures


"Avoid the problem rather than solve it"


Trevor Kletz

Avoid the runaway rather than mitigate its consequences

Measures: Strategies for choice

- Risk reduction by design
 - Reduction of the severity
 - Semi-batch / Batch
 - Continuous / Batch
- Risk reduction by control
 - Technical measures
 - Avoid runaway
 - Fail safe process
- Emergency measures
 - Mitigate the consequences of runaway
 - Containment
 - Pressure relief

Amount of Vapour

All the energy used for boiling (reaction mass is at the boiling temperature)

$$m_{vap} = \frac{Q_R' \cdot m_R}{\Delta H_V'} \begin{array}{cccc} & \text{m}_{\text{vap}} : & \text{Mass of evaporated solvent} & \text{[kg Solvent]} \\ & \text{Q'r} : & \text{Heat of reaction} & \text{[kJ/kg Reaction mass]} \\ & \Delta H_v' : & \text{Heat of vaporisation} & \text{[kJ/kg Solvent]} \\ & \text{m}_{\text{R}} : & \text{Mass of reaction mixture} & \text{[kg Reaction mass]} \end{array}$$

As a function of the "distance" from Boiling Point

$$m_{\mathrm{vap}}' = \left(1 - \frac{(T_{\mathrm{b}} - T_{\mathrm{o}})}{\Delta T_{\mathrm{ad}}}\right) \cdot \frac{Q_{\mathrm{r}}'}{\Delta H_{\mathrm{v}}'} \quad \begin{array}{l} \text{m'}_{\text{vap}} : \text{Mass of evaporated solvent } \text{[kg Solvent/kg reaction mass]} \\ T_{\mathrm{b}} : \quad \text{Boiling Temperature } \text{[°C]} \\ T_{\mathrm{0}} : \quad \text{Starting temperature } \text{[°C]} \\ \Delta T_{\mathrm{ad}} : \quad \text{Heat of vaporisation } \text{[kJ/kg Solvent]} \\ \Delta H_{\mathrm{v}}' : \quad \text{Heat of vaporisation } \text{[kJ/kg Solvent]} \end{array}$$

Q'_R: Reaction energy [kJ/kg Reaction mass]

Vapour flow, velocity

Mass flow rate of vapour

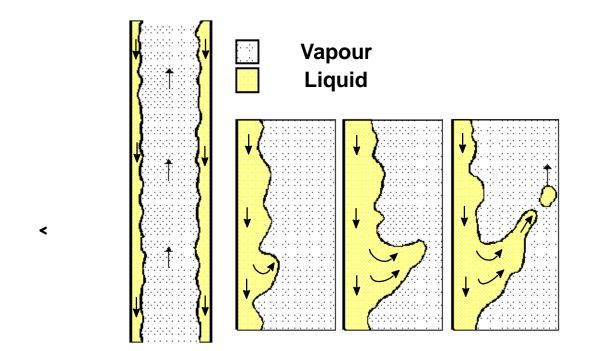
$$\dot{m}_V = \frac{q_R' \cdot m_R}{\Delta H_V'}$$

• Vapour specific weight

$$\rho_G = \frac{P \cdot M_W}{R \cdot T}$$

• Vapour velocity $u_V = \frac{\dot{m}_v}{\rho_C \cdot S}$

$\dot{m}_{_{\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	Rate of evaporation	[kg Solvent /s]
q' _R :	Heat release rate of reaction	[W/kg]
$\Delta \hat{H}'_{v}$:	Heat of vaporisation	[J/kg Solvent]


 ho_G : Vapour specific weight [kg/m³] P: Pressure [Pa (abs)] M_W : Molar weight [kg/mol] R: ideal gas constant 8.314 [m³.Pa/(mol.K)]

T: Temperature [K]

S: Section of the pipe/reactor $[m^2]$ u_v : Vapour velocity [m/s]

Flooding

- Flooding of the vapour tube:
 - Consequence: increased pressure drop
 - Boiling barrier does not work: pressure increases

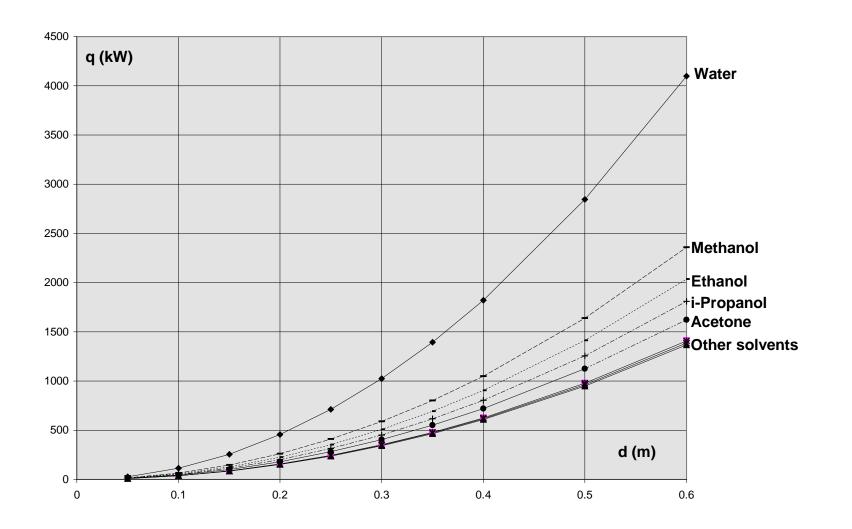
Flooding of Vapour Tube

$$q_{\text{max}} [W] = (4520 \cdot \Delta H_V' + 3.37 \cdot 10^6) \cdot s$$

$$u_{G\text{max}} = \frac{4520 \cdot \Delta H_V' + 3.37 \cdot 10^6}{1000 \cdot \Delta H_V' \cdot \rho_G}$$

u_{Gmax}: Limit velocity at interface, m.s⁻¹

 $\Delta H'v$: Heat of vaporisation, kJ / kg


 $\rho_{\rm G}$: specific Weight of **vapour**, kg.m⁻³

s: Section of tube, m²

4520: Constant: Mass flux, kg solvent / (m².s)

 $3.37.10^6$ Constant: Heat flux, J / (m².s)

Flooding of Vapor Tube

Solvents	U _{G max} Atmospheric boiling conditions
Water	10.3
Methanol	6.6
Ethanol	5.4
Isopropanol	4.7
Acetone	5.2
Toluene	4.8
THF	5

Swelling of Reaction Mass

$$\alpha = K \cdot \left(\frac{\rho_G}{\rho_L - \rho_G}\right)^{0.17} \cdot D_H^{*-0.1} \cdot u_G^{*a}$$

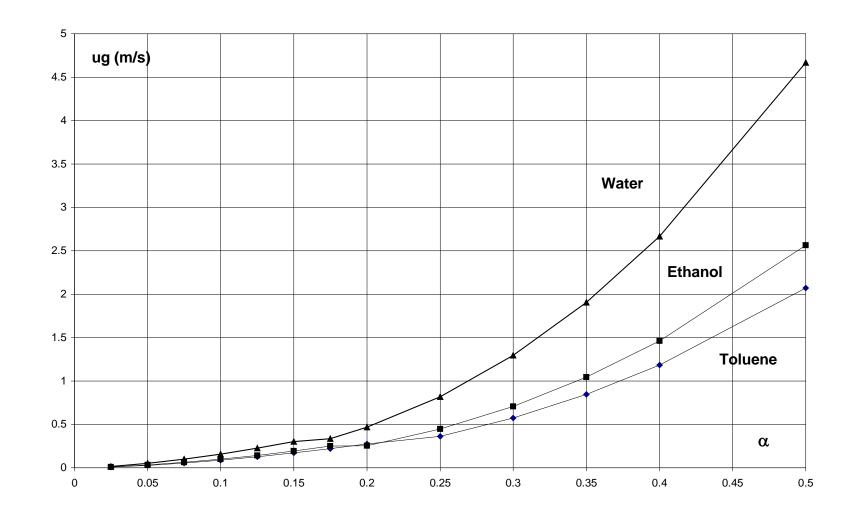
$$\alpha = \frac{H_B - H_0}{H_B}$$

$$D_{H}^{*} = \frac{D_{H}}{\sqrt{\frac{\sigma}{g \cdot (\rho_{L} - \rho_{G})}}}$$

$$D_{H}^{*} = \frac{D_{H}}{\sqrt{\frac{\sigma}{g \cdot (\rho_{L} - \rho_{G})}}}$$

$$u_{G}^{*} = \frac{u_{G}}{\sqrt{\frac{\sigma}{g \cdot (\rho_{L} - \rho_{G})}}}$$

$$\mu_{G}^{*} = \frac{u_{G}}{\sqrt{\frac{\sigma}{g \cdot (\rho_{L} - \rho_{G})}}}$$


$$\mu_{G}^{*} : \text{Specific weight of vapour, kg.m}^{-3}$$

$$\sigma : \text{interfacial tension kg.s}^{-2}$$

$$D : \text{Hydraulic diameter of reactor m}$$

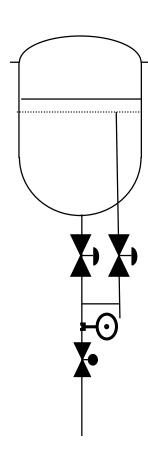
$$\begin{cases} u_G^* < 2 \Rightarrow K = 0.68 & a = 0.62 \\ u_G^* \ge 2 \Rightarrow K = 0.88 & a = 0.40 \end{cases}$$

D_H: Hydraulic diameter of reactor, m

Example: Cooling by evaporation

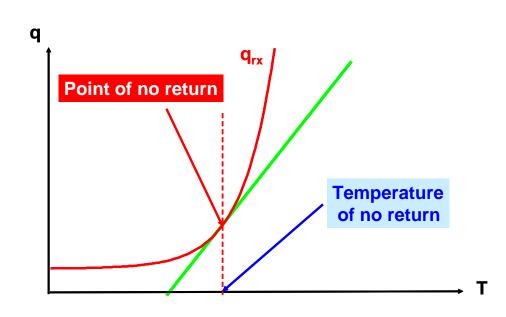
6.3 m³ reactor filled with 6.3 m³ of acetone

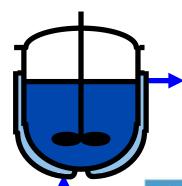
 $V_{\text{max}} = 7 \text{ m}^3$


Diameter of vapour tube 200 mm 300 mm

Max. heat release rate 35 W/kg 68 W/kg

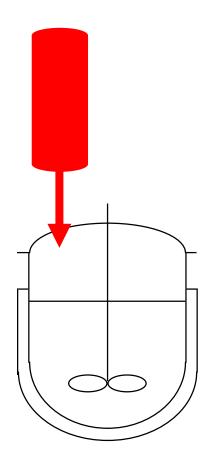
Limiting factor Flooding Swelling


Technical Measures Limitation of feed in SBR


- Amount of feed
 - Portions
 - Redundant feed valves
- Feed rate
 - Orifice
 - Volumetric pump
- Interlocks
 - Temperature + / -
 - Stirrer

Emergency Cooling

- Must be independant of utilities
- Limitation in case of solidification
- Agitation is critical

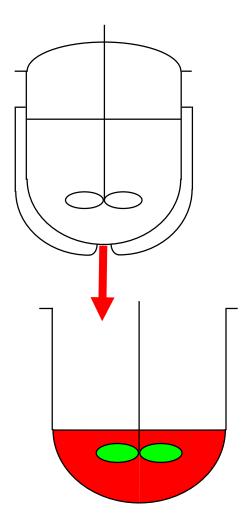


Controllability	q' (W/kg) Stirred	q' (W/kg) Unstirred
Unlikely	> 100	> 10
Difficult	50 – 100	5 – 10
Marginal	10 – 50	1 – 5
Feasible	5 – 10	0.5 – 1
Easy	1 – 5	0.1 – 0.5
Un- problematic	< 1	< 0.1

Quenching

- Amount of inhibitor
- Temperature of inhibitor
- Rate of addition
- Degree of mixing

Probability	Controllability	TMRad (h) from MTT
Frequent	Unlikely	<1
Probable	Difficult	1 – 8
Occasional	Marginal	8 – 24
Low	Feasible	24 – 50
Remote	Easy	50 – 100
Almost impossible	Un- problematic	> 100

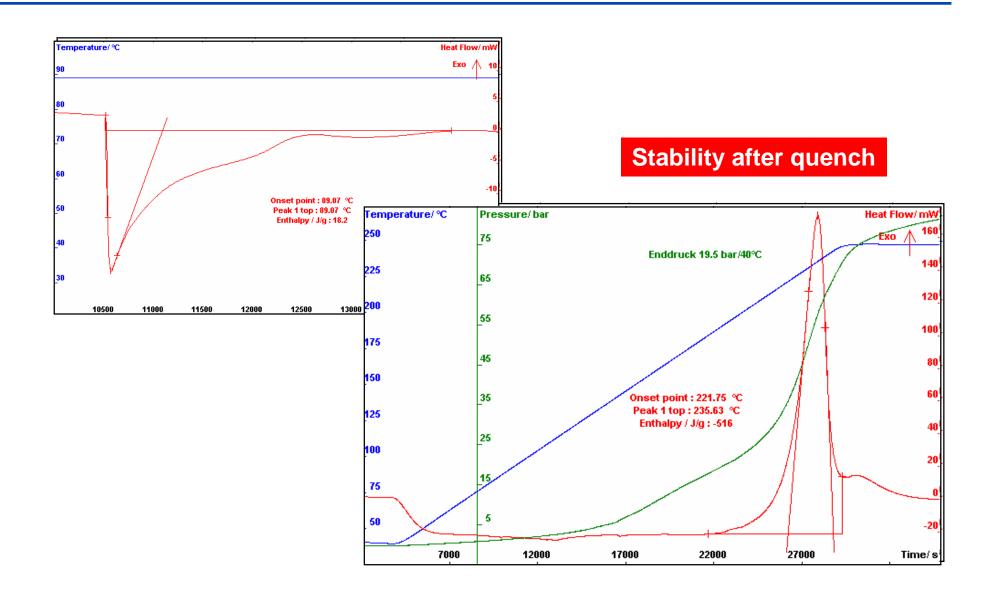


Dumping

• Dumping vessel with required volume

• Transfer line

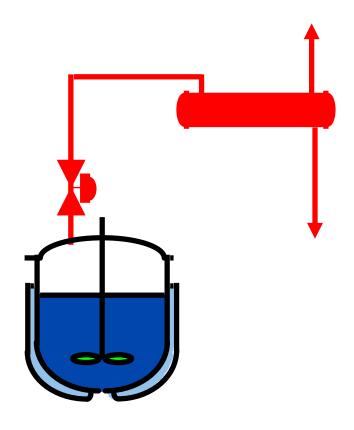
Probability	Controllability	TMRad (h) from MTT
Frequent	Unlikely	<1
Probable	Difficult	1 – 8
Occasional	Marginal	8 – 24
Low	Feasible	24 – 50
Remote	Easy	50 – 100
Almost impossible	Un- problematic	> 100

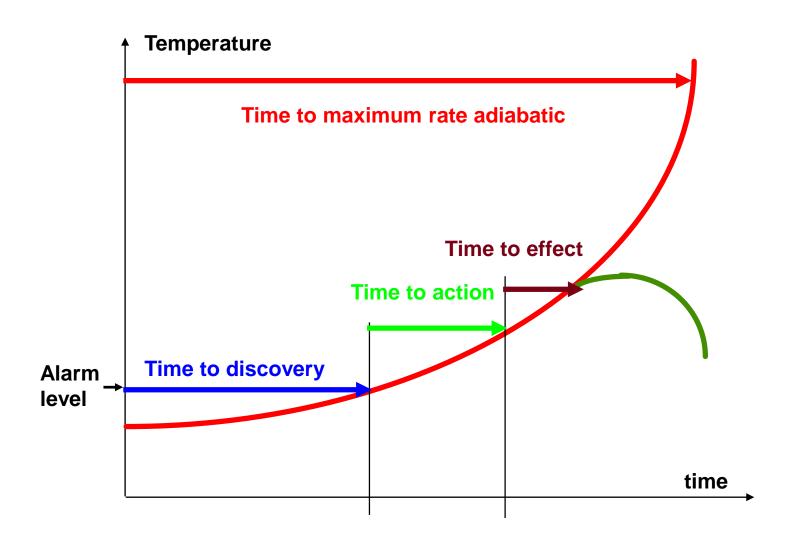


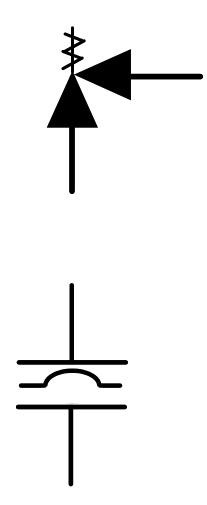
Calvet Calorimetry

Quantitative measurement

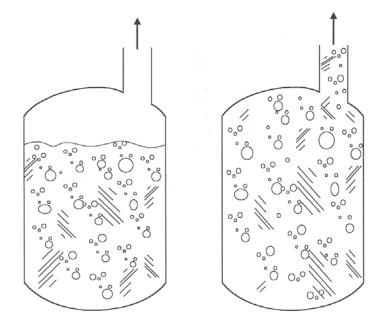
- Simulation of dumping or quench
- Measurement of pressure
- Mixing cell
 - Water ingress
 - Quenching
 - Inhibition
 - Dumping

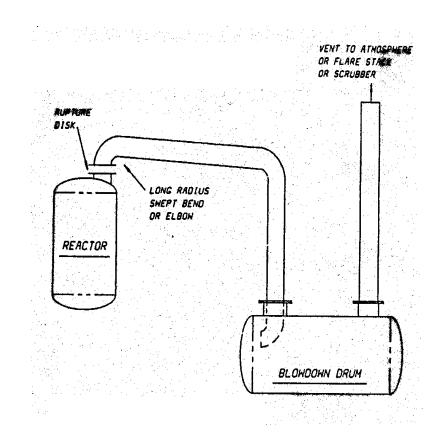





Controlled depressurisation

- Different from pressure relief
- Allows to use evaporative cooling
- Condenser or scrubber
- Independent of utilities


Probability	Controllability	u (m/s)
Frequent	Unlikely	> 20
Probable	Difficult	10 – 20
Occasional	Marginal	5 – 10
Low	Feasible	2-5
Remote	Easy	1 – 2
Almost impossible	Un- problematic	< 1



Champagne-Effect

Design for two phase flow

- Increased head loss
- Larger section required
- Evaporation due to expansion
- High velocity

→ Specific Design Method according to DIERS (Design Institute for Emergency Relief Systems)

Sizing Examples

Required diameter for a rupture disk

Physical scenario

Maximum heating (150°C) with acetone

Heating power:110 W/kg

One phase flow:50 mm

Two phase flow:150 mm

Chemical reaction

Power at process temperature: 20 W/kg

Power at relief conditions:310 W/kg

Two phase flow:250 mm

Emergency Pressure Relief

- Emergency pressure relief shall only be used as a last line of defence
- Two phase flow is likely to occur
- Two phase flow requires larger diameters
- High velocities: mechanical design: thrust
- Effluent treatment is required
- Effluent treatment to be sized to separate liquid
- Secondary explosion likely with flammable compounds